

Signaux | Chapitre 2 | Plan de cours

S2 · Interférences à deux ondes

I - Interférences entre deux ondes mécaniques

- I.1 Position du problème
- I.2 Représentation complexe
- I.3 Calcul de l'amplitude résultante
- I.4 Conditions d'interférences

II - Interférences entre deux ondes lumineuses

- II.1 Calcul du déphasage
 - a) Chemin optique
 - b) Différence de marche
 - c) Exemple
- II.2 Éclairement résultant
- II.3 Conditions d'interférences
- II.4 Application : les trous d'Young
 - a) Description du dispositif
 - b) Calcul de la différence de marche
 - c) Éclairement et interprétation

Capacités exigibles du chapitre		
	Savoir associer à tout signal harmonique $s=A\cos(\omega t+\varphi)$ le signal complexe $\underline{s}=Ae^{i(\omega t+\varphi)}=A_me^{i\omega t}$	1.2
	Définir l'amplitude complexe $A_m=Ae^{i\varphi}$ associée au signal $s=A\cos(\omega t+\varphi)$.	1.2
	Savoir qu'une somme de signaux harmonique de même pulsation ω est un signal harmonique de pulsation ω .	1.3
	Interférences entre deux ondes <u>mécaniques</u> de même fréquence : • Établir l'amplitude de l'onde résultante en fonction du déphasage.	1.3
	$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\Delta\varphi)}$	
	• Établir & Énoncer les conditions d'interférences constructives ou destructives, en fonction du déphasage $\Delta \varphi$ et de la différence de marche δ .	1.4
	$\Delta \varphi = 2\pi p \iff \delta = p\lambda$ et $\Delta \varphi = 2\pi \left(p + \frac{1}{2}\right) \iff \delta = \left(p + \frac{1}{2}\right)\lambda$	
	Définir le chemin optique.	II.1.a
	Interférences entre deux ondes <u>lumineuses</u> de même fréquence :	
	• Établir la relation entre le déphasage et la différence de chemin optique / différence de marche.	II.1.b
	$\Delta arphi = rac{2\pi}{\lambda_0} \delta$	
	 Définir l'éclairement. Établir la formule de Fresnel : 	II.2
	$E(M) = E_1(M) + E_2(M) + 2\sqrt{E_1E_2}\cos(\Delta\varphi)$	

• Énoncer les conditions d'interférences constructives ou destructives, en fonction du déphasage

☐ **Établir** la figure d'interférences obtenue à l'aide du dispositif des trous d'Young.

arDelta arphi et de la différence de marche δ .

□ **Définir** l'interfrange d'une figure d'interférence.

□ Connaître le développement limité : $(1 + \varepsilon)^{\alpha} \simeq 1 + \alpha \varepsilon$.

II.3

11.4

II.4.b

II.4.c